
Kernel Integral Images: A Framework for Fast Non-Uniform Filtering

Mohamed Hussein
Dept. of Computer Science

University of Maryland
mhussein@cs.umd.edu

Fatih Porikli
Mitsubishi Electric Research Labs

Cambridge, MA 02139
fatih@merl.com

Larry Davis
Dept. of Computer Science

University of Maryland
lsd@cs.umd.edu

Abstract

Integral images are commonly used in computer vision
and computer graphics applications. Evaluation of box fil-
ters via integral images can be performed in constant time,
regardless of the filter size. Although Heckbert [6] extended
the integral image approach for more complex filters, its us-
age has been very limited, in practice. In this paper, we
present an extension to integral images that allows for ap-
plication of a wide class of non-uniform filters. Our ap-
proach is superior to Heckbert’s in terms of precision re-
quirements and suitability for parallelization. We explain
the theoretical basis of the approach and instantiate two
concrete examples: filtering with bilinear interpolation, and
filtering with approximated Gaussian weighting. Our ex-
periments show the significant speedups we achieve, and the
higher accuracy of our approach compared to Heckbert’s.

1. Introduction

Filtering is a fundamental image processing operation.
The computational complexity of image filtering depends
on the complexity and size of the filter. For separable fil-
ters, for example, efficient computation is possible by ap-
plying two consecutive one-dimensional filters instead of
the original two-dimensional filter. However, even when
taking advantage of the filter’s separability, the computa-
tional time increases with the filter’s size, which is unfavor-
able for large filters. In some cases, we do not even know
the filter size in advance, e.g. when the filter size is deter-
mined dynamically based on feature values. In such cases,
the separability of the filter does not help. For box filters,
which are used to compute averages and summations over
rectangular image regions, there is an elegant technique that
can overcome these difficulties. Given an integral of image
features (Figure 1), filtering with a box filter at any point
can be performed in constant time regardless of the filter
size. Unfortunately, using pre-computed integrals is lim-
ited, in practice, to box filters. In this paper, we present a
novel extension that makes pre-computed integrals usable

for more complex filters.

The idea of using pre-computed integrals was first in-
troduced, with the name summed-area tables, by Crow [3]
to be used for texture mapping in computer graphics. Re-
cently, it was popularized in the field of computer vision,
with the name integral images, by Viola and Johns [11],
who used it for fast computation of Haar wavelet features.
Later on, integral images were generalized by Porikli [9]
to integral histograms, which allow for fast construction of
feature histograms. More recently, integral images and in-
tegral histograms were used to speed construction of His-
tograms of Oriented Gradient descriptors by Zhu et al. [13],
Region Covariance descriptors by Tuzel et al. [10], and the
SURF descriptors by Bay et al. [1].

To the best of our knowledge, usage of integral images in
computer vision applications has been limited to the special
case of box filtering although some of these applications can
perform better when using non-uniform filters. For exam-
ple, Dalal and Triggs [4] use bilinear interpolation between
neighboring cells and Gaussian weighting of pixels within a
block of pixels in constructing their histograms of oriented
gradients features for human detection. They show how
these weighting schemes enhance the detector’s accuracy.
To develop a fast version of Dalal and Triggs’ detector, Zhu
et al. [13] sacrifice the benefits of these weighting schemes
to enable usage of integral images. Another example is in
the work of Bay et al. [1], where Gaussian derivative filters
are approximated by box filters so that integral images can
be used. Perhaps, a better approximation would be pos-
sible if integral images were able to handle non-uniform
weighting filters. A third example is in building appearance
models for tracking, where pixels closer to the center of the
tracked region are given higher weights than pixels closer
to the borders, e.g. Elgammal et al. [5]. Consider a par-
ticle filter tracker, e.g. Zhou et al. [12], where appearance
models for hundreds of overlapping regions need to be con-
structed, possibly for many tracked targets, on every frame.
Applying non-uniform weighting of pixels in such a situa-
tion without the aid of a fast technique similar to integral
images can be impractical for real-time application.

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Heckbert [6] introduced the theoretical foundation of
the summed-area tables (integral images) technique and ex-
tended the theory to allow for more complex filters. How-
ever, his extension required a very high precession numeri-
cal representation even for moderate image sizes [7]. Simi-
lar to Heckbert, we present an approach to extend the in-
tegral images technique to allow for non-uniform filters.
However, our approach has lower precision requirement
than Heckbert’s and is more suitable for parallel implemen-
tation. We call our approach kernel integral images. A ker-
nel integral image is a group of integral images such that a
linear combination of box filters applied to them is equiva-
lent to applying a more complex filter. We instantiate two
examples of applying our approach that are relevant to com-
puter vision applications: feature filtering with bilinear in-
terpolation, and approximation of filtering with Gaussian
weighting. Our experimental analysis shows the significant
speedups we achieve, and the superiority of our approach to
Heckbert’s in terms of accuracy.

The rest of the paper is organized as follows: section 2
introduces notation and explains integral images in an ab-
stract form. Section 3 employs filtering with bilinear inter-
polation as an example to introduce our extension, which is
afterwards formalized in section 4. Then, the example of fil-
tering with approximate Gaussian weighting is described in
section 5. In section 6, we compare our approach to Heck-
bert’s. Empirical analysis of speedups and numerical errors
are presented in section 7, followed by conclusions in sec-
tion 8.

For clarity of presentation, we focus on one and two di-
mensional signals. The extension to higher dimensions is
straight forward.

2. Fast Filtering via Integral Images

2.1. Preliminaries

Let f : x → R be a function that maps a point
x = (x1, x2) to a real value, where 0 ≤ xi ≤ Ni, Ni >
0, i = 1, 2. Therefore, the domain of f , Df , is a rectan-
gle bounded by the lines xi = 0 and xi = Ni, i = 1, 2.
A rectangular region (referred to as a region from now on)
R ⊆ Df is defined by a pair of points xb and xe such that
xb,xe ∈ Df , and xb

i < xe
i , i = 1, 2. The two points

xb and xe represent the two extreme points of the region
R. We refer to the ordered pair r = (xb,xe) as the region
definition. Figure 1 illustrates some of these definitions. In
practice, the function f represents the raw intensity value
or some other feature at each point in an image. Its domain,
Df , is the set of all pixel coordinates in the image. N1×N2

is the image size.
A filtering of the values of f over a region R can be

defined as a function Af : R → R that maps the region to
a real value. The form of the filtering function we consider

Figure 1. An integral of image features. The value of the integral at
a point is the sum of the values of image features in the rectangular
area from the origin to the point. The sum of feature values over
any axis-aligned rectangular region (e.g. the small white rectangle)
is determined by the value of the integral at the four corners of the
region.

can be expressed as

Af (R) =
∑
x∈R

ar
f (x), (1)

where the contribution function ar
f (x) defines the contribu-

tion of the point x to the filtering of the function f over the
region R. In general, as the superscript of ar

f indicates, the
contribution of a point x depends not only on the point coor-
dinates and the function f , but also on the definition of the
region, i.e. its two extreme points. In this section we first
consider the simpler case, where the contribution of a point
is independent of the region’s definition . We handle the
general case in sections 3 and 4. Thus, for now, we denote
the contribution function by af instead of ar

f . Therefore,
the filtering function is redefined as

Af (R) =
∑
x∈R

af (x). (2)

We call such a filtering function and its associated contribu-
tion function region-independent functions.

In its simplest form, the contribution function can be
equal to the function f . That is

af (x) = f(x) . (3)

But, in fact, we can use any function that can be evaluated
independently from the filtering region’s definition. For ex-
ample, we can define the contribution function as

af (x) = ‖x‖f2(x) . (4)

Therefore, filtering with region-independent contribu-
tions is much more general than just summing feature val-
ues over a rectangular region.

2.2. Integral Images

When filtering is computed over many regions that over-
lap, using equation 2 is not efficient. This is because the
computations performed in areas that are shared among
more than one overlapping region will be repeated for each
region. Luckily, the filtering equation has a sub structure
that allows for a dynamic programming solution. This dy-
namic programming solution is what we refer to as integral
images.

Define the integral image of a function f , If , as a func-
tion with the same domain and codomain as f , and of the
form

If (x) =
∑

y∈Df ,yi≤xi,i=1,2

af (y). (5)

The value of the integral image of a function f at a point
x is the sum of the contributions of all points in the region
defined by (o,x), where o is the origin or the coordinate
system.

Given this formulation of integral images, it becomes
much simpler to evaluate the filtering function over any re-
gion R. A filtering function can be written in terms of an
integral image as

Af (R) = If (xe
1, x

e
2)−If (xb

1, x
e
2)−If (xe

1, x
b
2)+If (xb

1, x
b
2),
(6)

where (xb,xe) defines the filtering region R (Figure 1).
In general, having the integral image, filtering over a

region R is reduced to O(1) computations compared to
O((xe

1 − xb
1) × (xe

2 − xb
2)) computations using the origi-

nal filtering function formulation, equation 2. However, the
cost of constructing the integral image itself is O(N1×N2).
Therefore, the utility of using integral images is realized
only when we filter over many overlapping regions. In the
case of exhaustively filtering over the entire domain of re-
gions, the speedups obtained when using integral images
were reported in [9] to be several orders of magnitude for a
broad range of parameter choices.

3. Extending Integral Images for Filtering with
Region-Dependent Contributions

Before discussing the formal treatment of the general
case, where the contribution functions are dependent on the
filtering region’s definition, we start with a concrete exam-
ple. Consider filtering with bilinear interpolation. A practi-
cal example is constructing the SIFT descriptor [8], where
filtering is performed over adjacent regions in a 4 × 4 grid
of cells of pixels, such that each pixel contributes to more
than one cell via bilinear interpolation.

We want to define the contribution function in this case.
A region R is defined by r = (xb,xe), where xb = (xb

1, x
b
2)

and xe = (xe
1, x

e
2). The center of the region is xc =

(xc
1, x

c
2) = (xb + xe)/2, half the width of the region is

hw = (xe
1 − xb

1)/2, and half the height of the region is
hh = (xe

2 − xb
2)/2. The contribution function at a point

x = (x1, x2) ∈ R is defined as

ar
f (x) =

(
hw − |x1 − xc

1|
hw

) (
hh − |x2 − xc

2|
hh

)
f(x).

(7)
Apparently, the contribution of a point is region-dependent.
Hence, the simple integral image approach presented in sec-
tion 2 is not directly applicable here.

For simplicity of presentation, we consider only the case
when x1 ≥ xc

1 and x2 ≥ xc
2. The other cases can be handled

similarly. By manipulating equation 7, we obtain

ar
f (x) =

(
hw − x1 + xc

1

hw

)
×

(
hh − x2 + xc

2

hh

)
f(x) (8)

=
(

xe
1 − x1

hw

) (
xe

2 − x2

hh

)
f(x) (9)

=
(

xe
1x

e
2

hw × hh

)
f(x) −

(
xe

1

hw × hh

)
(x2f(x)) −

(
xe

2

hw × hh

)
(x1f(x)) +

(
1

hw × hh

)
(x1x2f(x)) (10)

= gr
1h1f (x) + gr

2h2f (x) +
gr
3h3f (x) + gr

4h4f (x), (11)

where h1f = f(x), h2f = x2f(x), h3f = x1f(x),
h4f = x1x2f(x), and gr

1 through gr
4 are the corresponding

coefficients from expression 10.
Now, we have expressed the original contribution func-

tion as a linear combination of simpler functions, h1f

through h4f , with weighting coefficients gr
1 through gr

4. The
interesting observation here is that all the h functions are
region-independent, and none of the g coefficients depends
on the point x or the function f , they only depend on the
region’s definition. We call functions such as the g coeffi-
cients point-independent. Substituting equation 11 into the
filtering function, equation 1, yields

Af (r) = gr
1

∑
x∈R

h1f (x) + gr
2

∑
x∈R

h2f (x) +

gr
3

∑
x∈R

h3f (x) + gr
4

∑
x∈R

h4f (x) . (12)

Equation 12 expresses the original filtering function as a
linear combination of other filtering functions. Moreover,

all of the component filtering functions in this linear com-
bination are region-independent. In fact, the linear combi-
nation obtained for the filtering function is exactly the same
as the linear combination for the contribution function it-
self. Since each of the component filtering functions in
equation 12 is region-independent, each can be computed
efficiently using an integral image for its own contribution
function. Then, by substituting the resulting values in equa-
tion 12, we obtain the desired filtering.

In summary, to use integral images in this example we
express the desired region-dependent contribution function
as a linear combination of several region-independent con-
tribution functions. Then, the desired region-dependent fil-
tering is easily computed as a linear combination of the cor-
responding region-independent filtering functions, which
can be efficiently computed via integral images.

4. Kernel Integral Images

In this section, we treat the case of region-dependent
filtering functions in a more formal way. Recall from the
example of bilinear interpolation that the mechanism used
to enable usage of integral images is expressing the fil-
tering function as a linear combination of other region-
independent filtering functions. To understand why this
works, we rewrite the final form of the contribution func-
tion, equation 11, in a more compact form as

ar
f (x) = < gr,hf (x) >, (13)

where

gr =

gr
1

gr
2

gr
3

gr
4

 , (14)

and

hf (x) =

h1f (x)
h2f (x)
h3f (x)
h4f (x)

 , (15)

In other words, we can express the contribution func-
tion as a dot product of two vector functions: one of them is
region-independentand the other is point-independent. This
is actually a necessary and sufficient condition to express
the filtering function as a linear combination of region-
independent filtering functions. We outline the proof of
this fact rather informally here. The sufficiency direction
is straight forward following the same argument as in the
bilinear interpolation example. Basically, by distributing
the summation of the filtering function over terms of the
dot product, as we did to obtain equation 12, sufficiency
immediately follows. The necessity direction is derived as
follows. Starting from the linear combination of filtering

functions, as in equation 12, we can express the linear com-
bination as a dot product. Then, by pulling the summation
out, we obtain an expression of the contribution function
that is a dot product of two parts, one of them is region-
independent, and the other one is point-independent.

The dot product immediately reminds us of the kernel
trick that is frequently used in machine learning, where fea-
ture vectors are implicitly transformed into a – typically –
higher dimensional space by replacing a dot product by a
kernel function that is equivalent to a dot product in the
transformed space [2]. Since applying any transformation
to the vectors gr and hf (x), in equation 13, will not change
their region-independence or point-independence natures,
the condition we stated above still holds on the transformed
vectors. Therefore, we can generalize the form of the con-
tribution functions we consider to

ar
f (x) = H(gr,hf(x)), (16)

where H is a kernel function, i.e. a function that computes a
dot product between its two arguments possibly after map-
ping them to another dimensional space. We call this gen-
eralization of integral images kernel integral images. In our
case, even if the kernel performs a dot product implicitly, to
compute our filtering function we have to perform it explic-
itly. Sometimes, the kernel computes the dot product in an
infinite dimensional space. In these cases, approximation of
the dot product with a small number of terms may be suffi-
cient for the application in hand. This point will be clarified
when we use it in an example in section 5.

5. Filtering with Gaussian Weighting

In many applications of image feature filtering in com-
puter vision, higher weights are given to pixels closer to
the center of the filtering region and lower weights to pix-
els closer to the borders of the filtering region. That is ap-
plied, for example, in object tracking, e.g. [5], where higher
weights are given to pixels that more likely belong to the
object than the background. The same idea was shown to
improve human detection performance in [4]. In both cases,
the weighting function used is a Gaussian weighting func-
tion.

To simplify the mathematical treatment, we consider the
one dimensional case. Consider a region R defined by the
two limiting points xb and xe. The center of R is defined
as xc = (xb + xe)/2. Denote the standard deviation of
the Gaussian weighting function by σr. The contribution
function in this case can be defined as

ar
f (x) = e−(x−xc

σr)2

f(x). (17)

Clearly, the contribution function is region-dependent. Con-

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

ar
f (x) = e

−
(

x−xc

σr

)2

ar
f
′(x) = 1 − (x−xc)2

σr2

Figure 2. Comparison of the Gaussian weighting function and its
approximation, equations 17 and 19, when the filtering region is
between 0 and 5 and σr is 5.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ar
f
′(x) = 1 − (x−xc)2

σr2ar
f (x) = e

−
(

x−xc

σr

)2

Figure 3. Comparison of the Gaussian weighting function and its
approximation, equations 17 and 19, when the filtering region is
between 0 and 5 and σr is 2.5.

sider the Euler expansion of equation 17

ar
f (x) =

∞∑
i=0

(−1)i(x − xc)2i

σr2ii!
f(x). (18)

Equation 18 can be viewed as a dot product in an infi-
nite dimensional space between two vector functions one
of them is region-independent and the other one is point-
independent. (To see this, consider expanding the expres-
sion (x−xc)2i in each term of the power series.) Hence, the
kernel integral image method applies. But, it requires com-
putation of an infinite number of integrals. However, we
can approximate the contribution function by taking a few
of the initial terms of the expansion. For example, taking
the first two terms only, we obtain the contribution function

ar
f
′(x) =

(
1 − (x − xc)2

σr2

)
f(x). (19)

This approximation is valid, i.e. does not give negative

weights, as long as σr is selected so that (x−xc)2

σr2 ≤ 1. Fig-
ures 2 and 3 show plots of the original Gaussian weighting
function, equation 17, and its approximation, equation 19,
when xb = 0, xe = 5, and σr = 5 and 2.5, respectively.
In the case of σr = 5 plots are very similar. However, for
the case of σr = 2.5, the difference is quite large. For ap-
plications that need weighting of pixels with respect to one

another so that pixels closer to the center get more impor-
tance, the difference between the two functions – in case the
selected value of σr makes a difference – is not expected to
be important. In general, whether the approximation is ac-
curate enough or not, and whether it is worth using more
terms of the expansion to achieve higher accuracy or not,
depends on the value of σr and on the application itself.

6. Kernel Integral Images vs. Repeated Inte-
gration

Heckbert [6] presented an elegant method, called fil-
tering by repeated integration, to extend usage of pre-
computed integrals to more complex filters. For complete-
ness of presentation, we briefly compare our method to his
method. For details, please refer to [6].

Heckbert’s approach is based on the fact that more com-
plex filters can be constructed by convolving a box-filter
with itself. For example, if we convolve a box filter with it-
self once, we obtain a triangular filter, which is very similar
to filtering with bilinear interpolation in two dimensions.
If we convolve a box filter with itself twice, we obtain a
quadratic filter, which is similar to the approximation we
use for Gaussian filters. In fact, convolution of a box filter
with itself an infinite number of times produces the Gaus-
sian filter. Suppose that we want to use a filter that is gen-
erated by convolving a box filter with itself n times. Heck-
bert’s approach is based on the fact that convolution with
such a filter is equivalent to integrating the image n times
and then convolving the nth integral with the nth derivative
of the filter. The nth derivative of such a filter turns out to
be a simple sparse filter, which is very efficient to convolve
with.

The main drawback of the repeated integration approach
is integrating the image several times. The required preci-
sion to represent the integration values grow linearly with
the number of integrations [7]. In our approach, we com-
pute integrals of several functions. But, each is integrated
only once. For example, in approximating a Gaussian fil-
ter by a quadratic filter, the repeated integration method
requires integrating the image three times consecutively,
while kernel integral images requires computing nine inde-
pendent integrals. Experimentally, kernel integral images in
this case produces smaller numerical errors using the stan-
dard double-precision floating point number representation,
as we show in section 7.3.

Another advantage of our approach is that the integrals
computed are independent of one another. That allows for
parallel computation of the integrals.

7. Experimental Results

7.1. Implementation Details

We evaluated our approach in terms of speedup by com-
paring to the conventional filtering approach (equation 1).
We implemented filtering with bilinear interpolation, and
filtering with approximate Gaussian weighting. Both are
implemented in two dimensions.

For bilinear interpolation, equation 11 in section 3 con-
siders only the case where x1 ≥ xc

1 and x2 ≥ xc
2. If we

consider the origin at the lower left corner of the filtering
domain, then equation 11 considers only the case of the top
right quadrant of the filtering region. Figure 4 lists coeffi-
cients of different terms for the four quadrants.

In order to perform fast filtering in this case, we compute
four different integral images, one for each of the contribu-
tion functions. The integration itself is conducted in four
steps, since each region’s quadrant has a different coeffi-
cient for each of the integrals, as shown in figure 4.

For the case of approximating Gaussian weighting in two
dimensions, by expanding equation 19 and extending the
notation to two dimensions, we obtain

ar
f
′(x) =

[(
1 − xc

1
2

σr2

)
+

2xc
1

σr2 x1 − 1
σr2 x2

1

]
×

[(
1 − xc

2
2

σr2

)
+

2xc
2

σr2 x2 − 1
σr2 x2

2

]
f(x).

(20)

Hence, to perform fast filtering, we compute nine inte-
gral images. These are integral images for the contribu-
tion functions: f(x), x1f(x), x2f(x), x1x2f(x), x2

1f(x),
x2

2f(x), x1x
2
2f(x), x2

1x2f(x), and x2
1x

2
2f(x). The coeffi-

cient of each region-independent filtering function can eas-
ily be obtained from equation 20. Unlike the case of bilinear
interpolation, there is no need to handle each region quad-
rant separately since they all have the same coefficients.

7.2. Running Time Analysis

In the two filtering examples, the function filtered on,
f(x), is the intensity at point x. Since intensity values do
not affect the computation time, we generate images with a
constant intensity value. Generated images are squares that
differ in the number of pixels, i.e. area. Generated image
areas range from 10000 to 200000 pixels, with an increment
of 10000 pixels.

Each image is scanned with sampled region sizes and
locations. The minimum region side length was set to 5
pixels, with side length increment of 5 pixels. Images are
scanned with each region size in all possible locations with
increments of 5 pixels in both directions. For each region,
the two filtering types are computed using integral images

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10

15

20

25

30

35

40

45

50

55

60
Slow Downs in Setup Time

Image Size (pixels)

Filtering with Bilinear Intrp
Filtering with Aprox Guass Wts

Figure 5. The slow down in setting up integrals vs the naive set up
of conventional approaches.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250
Speedup in Filtering Time

Image Size (pixels)

Filtering with Bilinear Intrp
Filtering with Aprox Guass Wts

Figure 6. Speedups of using integral images compared to conven-
tional method. These plots consider speedups in filtering time
only.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250
Overall Speedup in Steup Plus Filtering Times

Image Size (pixels)

Filtering with Bilinear Intrp
Filtering with Aprox Guass Wts

Figure 7. Speedups of using integral images compared to conven-
tional method. These plots consider speedups when adding con-
struction time to filtering time.

and using conventional filtering. For each image, two time
periods are measured: 1) the time to set up necessary struc-
tures, that is integral images or just type conversion when

f(x) x2f(x) x1f(x) x1x2f(x)
Top Right Quadrant xe

1x
e
2 −xe

1 −xe
2 1

Top Left Quadrant −xb
1x

e
2 xb

1 xe
2 −1

Lower Right Quadrant −xe
1x

b
2 xe

1 xb
2 −1

Lower Left Quadrant xb
1x

b
2 −xb

1 −xb
2 1

Figure 4. Coefficients of different contribution functions in the case of bilinear interpolation, equation 7, for the four region quadrants. All
coefficients in the table have to be normalized by dividing by hw × hh

the conventional filtering is used, 2) and the time to scan
the image and compute filtering over all scanned regions.

The plots in figure 5 show the slow-downs in the setup
time. In the case of bilinear interpolation, the slow down
is around 20x, and in the case of approximate Gaussian
weighting, it is around 45x. On the other hand, figure 6
shows the speedups obtained when considering only the
time to scan the image and evaluate the filtering function
at all probed regions. The speedups are monotonically in-
creasing with the image size. For an image size of 200000
pixels, we achieve a speedup of around 90x in the case
of bilinear interpolation, and 220x in the case of approxi-
mate Gaussian weighting. This shows the significant bene-
fit of using our approach, especially in the case of Gaussian
weighting. Therefore, despite the complexity of computing
more integral images during setup, filtering with Gaussian
weighting benefits more from using integral images. Fi-
nally, figure 7 shows speedups when adding the setup and
filtering times together. The curves in this figure look very
similar to the curves in figure 7, which consider speedups
on filtering time only. This shows that in the two weighting
schemes evaluated, the setup time is almost negligible with
respect to the filtering time.

7.3. Relative Error Analysis

In this set of experiments, we evaluate the two fast filter-
ing methods, kernel integral images and repeated integra-
tion, in terms of their relative error. The error we measure
here is the difference between the value computed by a fast
filtering method and the value computed by conventional
filtering (equation 1). The relative error is the ratio between
this difference and the value computed by conventional fil-
tering.

We generate 10 random images of size 1024×1024. We
evaluate the filtering function on a region of size 31 × 31
at all possible locations in the image. For each location
we compute the relative error and plot relative error val-
ues against the distance from the region’s top-left corner to
the image’s top-left corner. The distance measure we use
is the area of the rectangle bounded by these two corners.
This distance measure is equivalent to the number of fea-
ture points that are added to produce the integral value(s)
associated with the region’s top left corner. The error is ex-
pected to increase with this distance measure.

In the case of bilinear interpolation, relative errors are
always zeros, but not so for approximate Gaussian weight-
ing. The problem with the approximate Gaussian weight-
ing is the integration of higher order contribution func-
tions, such as x2

1x
2
2f(x). These contribution functions re-

quire higher precision to represent. Their integrals require
even higher precision that is outside the range the double-
precision floating point representation. Figure 8 shows a
third-degree polynomial fit of the relative errors in the case
of approximate Gaussian weighting using kernel integral
images. The figure compares two methods of computing
integrals in terms of the error they produce. The one-pass
method scans the image once and computes the value of the
integral at a pixel as a function of its three preceding pix-
els. The two-pass approach scans the image twice: once
integrating horizontally and once vertically. The error gen-
erally increases with the distance from the origin. The two-
pass method produces around an order of magnitude lower
error than the one-pass method. That is expected since in
the one-pass method, numbers grow more rapidly allowing
for larger errors when adding two numbers that differ by
many orders of magnitude.

Figure 8 also shows the relative errors, using two-pass in-
tegration, of the repeated integration method when used to
approximate Gaussian filters with a quadratic filter. The er-
ror of our approach, even when using one-pass integration,
is lower than the error of the repeated integration method.
Similar to our approach, the repeated integration method
produces no errors when applied to bilinear interpolation
filtering.

In these experiments we use non-negative numbers to
represent intensity and pixel coordinate values. These val-
ues can be linearly mapped to allow for both negative and
positive numbers. In this way, the effective precision used
can be increased by utilizing the sign bit in the binary rep-
resentation, and therefore the accuracy can be enhanced, as
shown in [7].

8. Conclusion

We presented an extension to the integral image frame-
work that allows for fast filtering under non-unform region-
dependent weighting of feature values. We refer to the
extended framework as kernel integral images. To show
the utility of the extension, we provided two examples of

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Distance (Area) From Origin

Relative Error

One Pass KII
Two Passes KII
Two Passes RI

Figure 8. Relative errors of computing Gaussian weighted filtering
as a function of distance (area) to the origin. KII stands for Kernel
Integral Images. RI stands for Repeated Integration.

widely used non-uniform filtering: one that can be imple-
mented exactly via our framework, that is filtering with
bilinear interpolation, and one that can be approximated,
which is filtering with Gaussian weighting. Our experi-
ments show that using our approach, significant speedups
can be achieved. The presented technique provides a higher
precision and more suitability for parallel implementation
than the repeated integration approach [6], which also ex-
tended the integral images framework for complex filters.

Acknowledgment

This work was funded, in part, by Army Research Labo-
ratory’s Robotics Collaborative Technology Alliance pro-
gram; contract number DAAD 19-012-0012 ARL-CTA-
DJH.

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up
robust features. In European Conference on Computer Vision
(ECCV), 2006.

[2] V. Cherkassky and F. Mulier. Learning from Data: Concepts,
Theory, and Methods. Wiley, 1998.

[3] F. Crow. Summed-area tables for texture mapping. Computer
Graphics (ACM SIGGRAPH), 18(3):207–212, 1984.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 886–893,
2005.

[5] A. Elgammal, R. Duraiswami, and L. Davis. Efficient com-
putation of kernel density estimation using fast gauss trans-
form with applications for segmentation and tracking. In
Second International Workshop on Statistical and Compu-
tational Theories of Vision, 2001.

[6] P. Heckbert. Filtering by repeated integration. ACM SIG-
GRAPH, 20(4):315–321, 1986.

[7] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra. Fast summed-area table generation and its ap-
plications. EUROGRAPHICS, 24(3):547–555, 2005.

[8] D. Lowe. Distinctive image features from scale-invariant
keypoints. nternational Journal of Computer Vision, 60:91–
110, 2004.

[9] F. Porikli. Integral histogram: A fast way to extract his-
togram features. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005.

[10] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast
descriptor for detection and classification. In European Con-
ference on Computer Vision (ECCV), 2006.

[11] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2001.

[12] S. K. Zhou, R. Chellappa, and B. Moghaddam. Visual
tracking and recognition using appearance-adaptive model
in particle filters. IEEE Transactions on Image Processing,
13(11):1491–1506, November 2004.

[13] Q. Zhu, S. Avidan, M.-C. Yeh, and K.-T. Cheng. Fast human
detection using a cascade of histograms of oriented gradi-
ents. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, New York, June 2006.

